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Volcanoes and Climate

Connections between volcanic eruptions and climatic change have been suggested on
timescales from days to 108 years. On short timescales, one approach to the
volcano/climate problem has been to compare the times of historic volcanic eruptions with
changes in yearly, monthly or seasonal surface temperatures on regional, hemispheric and
global scales. These studies involve either a direct comparison of the times of significant
eruption years with temperature records (e.g., Rampino and Self, 1982, 1984; Stothers,
1984; Angell and Korshover, 1984; Mass and Portman, 1989) (Table 1) or a study of
composited temperature records for a number of years (months, seasons) before and after a
chosen set of eruptions (e.g., Mass and Schneider, 1977; Self et al., 1981, Taylor et al.,
1980). Eruptions are usually chosen using various measures of volcanic intensity
including the VEI (Volcanic Explosivity Index) of Newhall and Self, 1982, or the DVI
(Dust Veil Index) after Lamb, 1970, or on the basis of the stratospheric aerosol loading
determined directly by observations or indirectly from the acidity record of ice cores. The
various studies give similar results—the composites show a Northern Hemisphere cooling
of 0.2 to 0.3°C for 1 to 3 years after eruptions for a number of eruptions grouped together
(Fig. 2), and individual volcanic events that produced significant aerosol clouds such as
Krakatau, 1883 or Tambora, 1816 are followed by Northern Hemisphere coolings of 0.3
to 0.7°C for 1 to 3 years after the eruption (Table 1) (Baldwin et al., 1976, Rampino and
Self, 1984; Stothers, 1984; Angell and Korshover, 1985). Zonally, the cooling is
amplified at high latitudes. Regional records show more variability , especially

meridionally.

Bradley (1988) has used monthly and seasonal temperature data, and finds that several
of the larger eruptions of the past 100 years are followed by significant negative anomalies
in summer and fall temperatures. Temperature decreases after major eruptions are found to
be abrupt and short lived (1 to 3 months), with a recurrence of the cooling about 12 and 24
months after the eruptions. The maximum effect of about 0.4°C occurs in the summer and
fall months immediately following the eruptions, and falls off in the same seasons over the

next 2 years.
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Mass and Portman (1989) recently suggested that the volcanic signal was present in
temperature records, but smaller than previously thought. It was limited to those eruptions
that created the densest aerosol clouds in the last 100 years, and was enhanced by
subtracting out other sources of interannual variability, e.g. the El Nino/Southem
Oscillation. Mass and Portman stressed that the volcanic “signal” of 0.1 to 0.2°C is of the
same order as "background"” temperature variations in non-volcanic years, and found no
evidence of large coolings in the first few months after the eruptions. It may be, however,
that stratospheric aerosol clouds have some effect on the ENSO phenomena, either
triggering them, or intensifying already existing ENSO patterns (Handler, 1984). Handler
(1986) has also suggested a connection between stratospheric acrosols and the strength of
the yearly Indian monsoonal precipitation .

These studies have attempted to "isolate” the volcanic signal in noisy temperature data.
Thyis assumes that it is possible to isolate a distinct volcanic signal in a record that may
have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism)
that all interact. The key to discovering the greatest effects of volcanoes on short-term
climate may be to concentrate on temperatures in regions where the effects of volcanic
aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is
especially true in sub-polar and mid-latitude areas affected by changes in the position of the
polar front. Such climatic perturbations can be detected in surface temperatures and in
proxy evidence such as decreases in tree-ring widths and frost rings, changes in the
treeline,weather anomalies such as unusually cold summers, severity of sea-ice in polar and
sub-polar regions, and poor grain yields and crop failures (for a review see Rampino et al,,
1988). In low latitudes, sudden temperature drops have been correlated with the passage
overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as
Tambora, 1815, these kinds of proxy and anectdotal information have been summarized in
great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel
and Stommel, 1986; C.R. Harrington, in press). These studies lead to the general
conclusion that regional effects on climate, sometimes quite severe, may be the major
impact of large historical volcanic aerosol clouds.

Tambora and 1816: The Test Case?
Instead of searching for the small climatic effects of small historic eruptions in climate

data sets, it may be instructive to look in detail at the strongest volcanic perturbation in
recent history, the Tambora eruption of April, 1815 and the events that followed it. Perhaps
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smaller eruptions (in terms of aerosols released) might have similar, but less extreme,
effects on climate that can be detected if one knows what to look for. Stothers (1984)
estimates an optical depth of about 1.0 following the Tambora eruption, and the presence of
large acidity peaks in ice cores from Greenland and Antarctica argues for a global disperesal
of the aerosol cloud of some 1014 g. In most studies of weather records or proxy data, the
year 1816, following the Tambora eruption, displays the strongest signal of possible
"volcano weather" in historical times. For example, in a key area in the Eastern Hudson
Bay region in midsummer 1816, the reduction in mean daily temperature from the long-
term average was about 5 to 6°. It has been suggested that a reduction in mean daily
temperature in this range could lead to the formation of perennial snowcover in northemn
Canada (Wilson, 1985). The negative anomaly in July 1816 brought the absolute mean
temperature to below 50C, more than 2° lower than the modern record in 1965. The
median height of the freezing level above eastern Hudson Bay in July 1965 (two years
after the Agung eruption) was about 600 to 700 m lower than the modemn 10 year value.
This suggests that the -6°C anomaly in 1816 might have produced a 1000 m drop, to bring
the freezing level to within 1500 m of the surface. Such conditions were maintained for
only two years, 1816 and 1817, but one may wonder how many years of consecutive
extreme seasonal weather would be required to establish an effective snowcover, and bring
ice/albedo feedback into play. Frequent and extended snowfall also took place in the region
in 1816-1817— in 1816, there were only five weeks without measurable snowfall (mid-
July to mid-August). Furthermore, the atmospheric circulation pattern was dominated by a
high pressure area over the surface of Hudson Bay, which remained ice covered through
the summer of 1816 (Wilson, 1985).

Catchpole and Faurer (1983) show sea ice patterns in 1816 that are also consistent with
a highly meridional atmospheric circulation pattern over eastern North America, showing
strong north to northwest winds in July and August of 1816 (Catchpole and Faurer, 1983).
Northwesterly winds brought cold air southward into the northeastern United States,
bringing the "Year without a Summer". The meridional circulation pattern also brought
cold weather to western Europe, and there is some evidence that, between these two
waves, warmer weather dominated, with an opening of the usually ice-covered Greenland
Sea between 740 and 80°N (Wilson, 1985).

It should be pointed out however, that the cold weather in the Hudson Bay area began

before April 1815, with unusually cold years beginning in 1811/12, so that the Tambora
eruption cannot be the only cause of the climate shift. Perhaps the coincidence of the
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Tambora eruption with a time of low sunspot numbers (indicating lower solar activity) led
to the unusually cold weather of the 1811-1817 period.

Frost rings in trees in the Western U.S. also show a correspondence with years of
volcanic eruptions (LaMarche and Hirschboeck, 1984). These may indicate outbreaks of
exceptionally cold weather during the summer months, again possibly the result of
increased meridional circulation. Light rings in subarctic trees from northern Quebec also
show a correspondence with volcanic eruptions; for example, damage is most widespread
in 1816-1817 ( Filion et al., 1986). Tree rings have also been used to create synoptic
summer temperature patterns for Europe, which show significantly cooler summers from
1812 to 1816 (Briffa et al., 1988). The same kinds of data can be assembled for the other
major volcanic aerosol clouds of the last 200 years, and similarities noted. If one can
establish patterns that appear to be characteristic of “volcanic" perturbation, then it may be
possible to detect such patterns even for the smaller eruptions, and to see how well climate
models simulate such perturbations. It may be necessary not only to model the volcanic
perturbation, but also to include the effects of ENSO events and possible solar variations in

the model runs.
VOLCANISM AND LONG-TERM CLIMATE CHANGE

One problem with studying historical eruptions is that they are quite small compared to
those in the geologic record. The largest explosive eruption in historic imes was probably
the Tambora, 1815 explosion, with about S0 km3 of erupted magma. This can be
compared with large ignimbrite forming eruptions such as the Toba event of 75,000 yr BP,
which erupted more than 2,800 km3 of magma (Rose and Chesner, 1987). For effusive
eruptions, the largest historic event was Laki, 1783, which produced 12 km3 of basalt,
compared with great flood basalt eruptions like the Roza flow in the Columbia River Group
(14 Myr BP), composed of 700 km?3 of basaltic lava in a smglc flow (Devine et al., 1984;
Rampino et al., 1988). Both of these eruptions may have released about 1016 g of
sulfurous gases. The effects of these and other pre-historic eruptions on climate are not
known. Both the Roza and Toba events appear to coincide with climatic coolings, but no
cause and effect relationship has been established.

If historic eruptions can cause small changes in climate, then perhaps larger eruptions

or groups of eruptions can cause major climate change. A number of authors have claimed
correlation between volcanic eruptions and glacial fluctuations on 103 to 103 year time
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scales. For example, Bradley and England (1978) and Porter (1981,1986) proposed that
second-order "Little Ice Age" glacial advances during the Holocene could have been driven
by eruptions, since the glacial advances correlate with peaks of acidity in polar ice cores.
Porter (1981) estimates that a global cooling of 1°K could lead to a snowline depression
sufficient to cause glacier advances equivlent to those of the last several centuries, but this
seems to be greater than the measured volcanic perturbations. Bray (1977, 1979a, b)
proposed that large eruptions preceded glacial periods, with the glaciations triggered by
atmospheric aerosol clouds. However, in this case, because of the inaccuracies in dating, it
is often difficult to determine which came first, the eruptions or the glaciation.

On even longer timescales, studies by Kennett et al (1977) have delineated pulses of
explosive volcanic activity in the Circum-Pacific region for the last 30 million years from
studies of age determinations (mostly K/Ar dates) on igneous rocks, and counts of ash
layers in deep-sea sediment cores. They find significant pulses of volcanism in the Plio-
Pleistocene (about 2 Myr BP), latest Miocene to Early Pliocene (6 to 3 Myr BP), Late
Miocene (11 to 8 Myr BP) and Middle Miocene (16-14 Myr BP). Combined with other
data (e.g., Hein et al., 1978), it seems that pulses of widespread (perhaps global) explosive
volcanism took place near 0.5, 2.5, 5, 10, 15, 20 and 40 Myr BP (Kennett et al,, 1985).
Some of these spurts in volcanism correlate with times of apparent pulses of plate motion
and sea level changes (Masuda, 1986; Rampino and Stothers, 1987), so the three may be
linked. These volcanic pulses can be also be correlated with times of global cooling and ice
formation as seen in oxygen-isotope data for the Cenozoic. Flood basalt episodes at 65, 35,
and 17 Myr BP also correlate with global coolings (Devine et al., 1984). This apparent
correlation of volcanic episodes with times of global cooling may be coincidental,
however, and there is no direct cause and effect mechanism to suggest beyond possible
ice/albedo feedback.

Recommendations
1. Look at the strongest aerosol perturbations, e.g. Tambora, Krakatau, Agung, El
Chichon, etc. Don't average together the effects of small and large eruptions.
2. Use regional and seasonal climate data sets where the effects of volcanism on climate
may be amplified.
3. Study the spread of aerosol clouds for volcanic eruptions in different parts of the world
at different times of the year. Compare with tracer models.
4. Look for changes in atmospheric circulation patterns that could be studied with GCMs.
Observed temperature series and tree-ring studies could provide synoptic weather patterns.
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S. Establish a new volcanic index based on VEI and data from ice cores, petrologic studies,

optical depth measurements, etc.

6. Look at climate records that have both climate and volcanic signals, e.g. ice cores.
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